3. П. Чорній, А. Д. Кульчицький, І. Б. Нірко, Н. П. Белянінова

РЕКОМБІНАЦІЙНІ ПРОЦЕСИ ТА ТЕРМОІНДУКОВАНІ ПЕРЕТВОРЕННЯ ЦЕНТРІВ ЗАБАРВЛЕННЯ В КРИСТАЛАХ ФЛЮОРИТІВ. ОДНОВИМІРНА МОДЕЛЬ

У моделі одновимірного іонного ланцюга, в якому точковими дефектами є домішкововакансійні диполі та центри забарвлення, досліджено релаксацію (F_A-V_K) та (F_A-V_{KD})-пар. Розглянуто три механізми релаксації центрів забарвлення: тунельний, термостимульоване тунелювання та термоактиваційної міграції носіїв заряду.

In the model of one –dimensional ion chain, in which admixture-vacancy dipoles and the colour centres are point defects, the relaxation $(F_A - V_K)$ and $(F_A - V_{KD})$ -pairs have been investigated. Three mechanisms of colour centres relaxation have been considered: tunnel, thermostimulated, tunneling and thermoactivated migration of charge carriers.

У роботах [3, 6, 7] у моделі іонного ланцюга, обмеженого по довжині домішкововакансійними диполями (ДВД), досліджено структуру та ефективність генерації центрів забарвлення в легованих кристалах флюоритів залежно від температури опромінювання зразків і концентрації домішки. Встановлено, що при низьких температурах, коли діркові та іонні процеси в кристалі заморожені, радіація генерує в матриці кристала (F_A - V_K) та (F_A - V_{KD})комплементарні центри забарвлення. Дірковий та іонний механізми релаксації утворених центрів забарвлення складають предмет досліджень даної роботи.

Аналіз експериментальних результатів, які опубліковані в попередніх наших роботах [1,4,5], дозволяє накреслити загальну схему мехапізму релаксації центрів забарвлення в кристалах флюоритів і залежність самих процесів від температури кристала. Встановлено, що реперними температурами для кристалів флюоритів є такі температури:

T_m – температура термоактиваційного розпаду V_K-центрів (температура, вище якої в кристалі існують мобільні дірки);

Т_г – температура реорієнтації ДВД (термоактиваційні перескоки аніонної вакансії по восьми еквівалентних позиціях куба, в центрі якого знаходиться домішковий іон);

T_d - температура термоактиваційного розпаду V_{KD}-центрів.

Спосіб релаксації центрів забарвлення визначається температурою зразка.

1. В області температур T<T_m релаксація центрів забарвлення відбувається тунельним шляхом. У результаті тунелювання дірки з V_{K} -центра на основний рівень F_{A} -центра в кристалі зникають близько розташовані F_{A} і V_{K} -центри. Часткове знебарвлення кристала супроводжується тунельною люмінесценцією та виникненням незначної концентрації M_{A} -центрів.

2. При температурі Т--Т_m здійснюється термоактиваційний розпад V_K-центрів. Мобільні дірки рекомбінують на F_A -центрах і захоплюються на ДВД з утворенням V_{KD}-центрів. Відбувасться повне знебарвлення V_K-центрів. Процес супроводжується появою першого максимуму термостимульованої люмінесценції (ТСЛ) та дірковою провідністю, виникають V_{KD}-смуги поглинання.

3. При температурі T=T_r протікає термоактиваційне тунелювання в розташованих по сусідству (F_A -V_{KD})-парах. Процес супроводжується виникненням другого максимуму TCЛ та $F_A \rightarrow M_A^+$ -перетвореннями (низькотемпературна стадія).

4. При температурах Т=Т_d відбувається термостимульоване відщеплення дірки (аніонної вакансії) від V_{KD}-центра з подальшим їх захопленням на F_A-центрах:

$$V_{KD} = V_a^+ M e^+ e_s^+ \xrightarrow{kT_d} \mathcal{A} B \mathcal{A} + e^+;$$
⁽¹⁾

$$\begin{cases} e^{+} + F_{A} = e^{+} + Me^{+}V_{a}^{0} \longrightarrow \mathcal{A}B\mathcal{A} + h\nu. \\ V_{KD} = V_{a}^{+}Me^{+}e_{s}^{+} \longrightarrow Me^{+}e_{s}^{+} + V_{a}^{+} = V_{KA} + V_{a}^{+}; \\ V_{a}^{+} + F_{A} \longrightarrow V_{a}^{+} + Me^{+}V_{a}^{0} \longrightarrow Me^{+}(V_{a}^{+})_{2}^{-} = M_{A}^{+}. \end{cases}$$

$$(2)$$

У випадку, коли реакція протікає за схемою (1), від V_{KD} -центра відщеплюється дірка, яка надалі рекомбінує з F_A -центром. Зникнення в кристалі комплементарної (F_A - V_{KD})-пари супроводжується відновленням у кристалі двох ДВД. При протіканні реакції (2) від V_{KD} -центра відходить аніонна вакансія, яка в подальшому локалізується на F_A -центрі. У цьому випадку зникнення пари (F_A - V_{KD})-центрів викликає появу в кристалі нової пари (M_A^+ - V_{KA})-центрів.

Енергія активації реакцій (1) і (2) описується співвідношенням

$$E_{d} = E_{0} + \frac{1}{4}E_{k}, \qquad (3)$$

де E_d – енергія термодисоціації V_{KD} -центра; E_0 – енергія активації міграції вільної дірки (вакансії); E_k – енергія кулонівської взаємодії домішки і розташованої в сусідньому аніонному вузлі дірки (вакансії).

Відносний вклад реакцій (1) і (2) в сумарну релаксацію (F_A - V_{KD})-пар залежить від енергії активації процесів (див. рівняння (3). Якщо енергія активації міграції вільної вакансії і дірки збігаються, то вклад обох процесів у релаксацію однаковий. У противному разі вихід цієї реакції буде більший, для якої значення E_0 менше.

У моделі одновимірного іонного ланцюга, який обмежений по довжині ДВД, нами зроблені розрахунки величини ймовірностей релаксації центрів забарвлення в залежності від способу релаксації (тунельна чи термоактиваційна релаксація, рекомбінація носіїв заряду чи зміна їх топології розміщення та інші фактори). Результати розрахунків наведені в табл. 1–4 та на рис.1–4.

Таблиця 1

ЧАСТКА (%) V_к-центрів, що релаксує внаслідок рекомбінаційних процесів (11.) і локалізується на двд (V_{кd})

с (мол. %)	<i>l=na</i>	Тунельна релаксація		Термоактиваційна релаксація		
		IL %	V _{KD} %	IL %	V _{KD} %	
5·10 ⁻¹	5	67	33	_	_	
1.10 ⁻¹	10	55	23	12	10	
1.10-2	20	25	15	45	15	
1.10 ⁻³	50	10	6	78	6	
1.10-4	100	5	2	90	3	

с – молярна концентрація домішок; *l* – середня відстань між домішковими іонами.

Таблиця 2

ЧАСТКА (%) Ғ_а-центрів, що релаксує в кристалі внаслідок рекомбінації (тсл) та (ғ_а→м_а`)- перетворень

с. мол. %	<i>l=na</i>	Термостимульс	вана люміне	F _A →M _A ⁺ -перетворення, %		
		Tm	T,	T _d	T,	T _d
5·10 ⁻¹	5	_	50	_	50	_
1.10 ^{.1}	10	26	4	28	4	28
1.10-2	20	60	1	19	1	19
1.10 ⁻³	50	86		7		7
1.10-4	100	95		2,5		2,5

 T_m – температура міграції V_K-центра; T_r – температура реорієнтації ДВД; T_d – температура термодисоціації V_{KD}-центрів.

Таблиця 3

ВІДНОСНИЙ ВКЛАД (%) ОКРЕМИХ МАКСИМУМІВ ТЕРМІЧНОГО ВИСВІЧУВАННЯ В СУМАРНИЙ ВИХІД ТСЛ

α (MOR θ ()	<i>l=na</i>	Максимуми ТСЛ, %			
		T _m	Tr	T _d	
5·10 ⁻¹	5	-	100	-	
1.10 ⁻¹	10	26	8	56	
1.10 ⁻²	20	60	2	38	
1.10 ⁻³	50	86	_	14	
1.10-4	100	95	-	5	

Позначення максимумів збігаються з табл. 2; V_{кD}-центри розпадаються дірковим способом.

Таблиця 4

ІМОВІРНІСТЬ (%) РОЗПАДУ V_{кd}-ЦЕНТРІВ ДІРКОВИМ (W₁) ТА АНІОННИМ (W₂) ШЛЯХАМИ

Т, К	W ₁ :W ₂	W ₁ :W ₂	W1:W2	W ₁ :W ₂	W1:W2	W ₁ :W ₂
	∆E=0,005 eB	∆E=0,01 eB	∆E=0,02 eB	∆E=0,03 eB	∆E=0,05 eB	∆E=0,1 eB
100	64:36	76:24	91:9	97:3	99,5:0,5	
150	59:41	70:30	83:17	91:9	98:2	
200	57:43	64:36	76:24	85:15	95:5	
250	56:44	62:38	72:28	80:20	92:8	99:1

T – температура термодисоціації V_{KD} -центра; ΔE – різниця в енергіях термодисоціації V_{KD} -центрів, що протікають згідно з рівняннями (1) та (2).

Рис. 1. Частка (%) запасеної кристалом світлосуми, що виділяється: 1 – у вигляді тунельної люмінесценції; 2 – унаслідок термоактиваційної рекомбінації (F_A-V_K)-пар; 3 – унаслідок рекомбінації (F_A-V_{KD})-пар

Рис. 2. Вклад (%) окремих максимумів термічного висвічування в сумарний вихід ТСЛ:

1 – максимум, обумовлений делокалізацією V_K-центрів; (T=T_m, 1 максимум); 2 – максимум, обумовлений термостимульованим тунелюванням дірок в (F_A-V_{KD})-парах (T=T_r, II максимум); 3 – максимум, обумовлений термоактиваційним розпадом V_{KD}-центрів (T=T_m, III максимум)

Рис. 3. Вклад (%) тунельного (1) та термоактиваційного (2) механізмів у сумарне F_A→ M_A⁺-перетворення

Тунелювання відбувається шляхом проникнення дірки з основного рівня V_{K} -центра на основний енергетичний рівень F_{A} -центра або ДВД. У першому випадку відбувається анігіляція (F_{A} - V_{K})-пар, яка супроводжується тунельною фосфоресценцією, у другому – має місце $V_{K} \rightarrow V_{KD}$ -перетворення.

З наведених у табл. 1 даних (III стовпець) випливає, що тунельна релаксація V_{K} -центрів є визначальною при високому вмісті легуючих домішок у кристалі. Зокрема, при концентрації домішки 0,1 – 0,5 мол. % більше половини запасеної кристалом свіглосуми виділяється у вигляді тунельної фосфоресценції (рис.1, крива 1). Саме тунельні процеси знижують граничні концентрації центрів забарвлення з 25 (теоретичні значення) до 10 % (експериментальні результати) від концентрації ДВД у кристалі. З пониженням вмісту домішки вклад тунельних процесів у релаксацію центрів забарвлення зменшується і в слаболегованих кристалах складає 5 - 10 % від загальної світлосуми.

Рис. 4. Імовірність розпаду V_к-центрів дірковим (w₁) та аніонним (w₂) шляхами:

Т – температура термодисоціації V_{KD}-центра; ΔE – різниця в енергіях термодисоціації V_{KD}-центрів згідно зі схемою (1) і (2); 1,1'- ΔE =0,005 eB; 2,2'- ΔE =0,01 eB; 3,3'- ΔE =0,02 eB; 4,4'- ΔE =0,03 eB; 5,5'- ΔE =0,05 eB

При високих концентраціях активатора тунельні процеси відіграють вирішальну роль у формуванні V_{KD} -центрів і лише в слаболегованих кристалах (с<10⁻² мол. %) вклад тунельного та термоактиваційного механізмів пропорційні (табл. 1, IV і VI стовпці).

При температурі $T-T_m$ у кристалі відбувається термоактиваційна делокалізація дірок (термостимульований розпад V_K-центрів). Частина мобільних дірок, що утворилися внаслідок розпаду V_K-центрів, рекомбінується з F_A-центрами, а інші захоплюються на ДВД :

$$e_{s}^{+} \xrightarrow{kT_{m}} e^{+}; e^{+} + F_{A} \longrightarrow \mathcal{A}B\mathcal{A} + h\nu;$$
 (3)
 $e^{+} + \mathcal{A}B\mathcal{A} \longrightarrow V_{KD}.$ (4)

У високолегованих кристалах основна маса утворених V_K-центрів зникає через їх тунелювання з F_A-центрами, і тому реакції (3) і (4) реалізуються з малим енергетичним виходом. У міру зменшення концептрації домішок роль тунельних процесів падає, а відповідно, зростає вихід реакцій (3) і (4) (табл. 1, III і V стовиці), максимум ТСЛ при T=T_m стає домінуючим (табл. 2, III стовиець; рис.1, крива 2; рис.2, крива 1).

Відносно частки дірок, які локалізуються на ДВД (рівняння 4), то її величина зменшується з пониженням концентрації домішки в кристалі (табл. 1, VI стовпець). Причина цього – різке зменшення (1/г²) енергії взаємодії між V_K-центром ДВД зі збільшенням відстані між ними.

Внаслідок тупелювання V_K-центрів на ДВД (параграф 3.1) та локалізації мобільних дірок на ДВД (параграф 3.2) у забарвлених кристалах утворюються V_{KD}-центри (табл. 1, IV і VI стовиці). У близько розташованих F_A і V_{KD}-центрах протікає їх тунельна релаксація, в основі якої – перехід дірки або апіонної вакансії від V_{KD}-центра на основний енергетичний рівень F_A -центра:

$$(V_{KD} - F_A) = (V_a^+ M e^+ e_s^+ - M e^+ V_a^0) \longrightarrow;$$

$$(M e^+ V_a^+ - M e^+ V_a^+) + hv_2 = (\mathcal{A} B \mathcal{A} - \mathcal{A} B \mathcal{A}) + hv_2;$$

$$V_{KD} - F_A) \longrightarrow (M e^+ (V_a^+)_2^- - M e^+ e_s^+) = (M_A^+ - V_{KA}).$$
(6)

Оскільки середні відстані між F_A і V_{KD} -центрами більші за відстані між F_A і V_{K-} центрами, вклад реакцій (5) і (6) у тунельні процеси при T<T_m є незначним. Однак ефективність

протікання цих реакцій збільшується, якшо кристал нагріти до температури T=T_r. При цій температурі як аніонні вакансії (V_a⁻), так і локалізовані дірки (es⁻) здійснюють реорієнтаційні перескоки по восьми єквівалентних позиціях вершини куба, у центрі якого знаходиться домішковий іон. Унаслідок реорієнтаційних перескоків V_{KD}-центр набуває трикутної (замість лінійної) конфігурації, що послаблює кулонівську взаємодію між діркою (аніонною вакансією) та остовом V_{KD}-центра. Виникає можливість дірці (аніонній вакансії) здійснити термостимульований перескок з першої координаційної сфери (відносно домішкового іона) в другу і третю з подальшим тунелюванням її на основний енергетичний рівень F_A-центра. Дані процеси обумовлюють виникнення ІІ максимуму ТСЛ при температурі T=T_r і термостимульованих F_A-→M_A⁺перстворень. З наведених у параграфі 2 результатів (табл. 2, IV і VI стовпці; табл. 3, IV стовпець; рис. 2, крива 2; рис. 3, крива 1) виходить, що термостимульоване тунелювання є основним каналом розпаду центрів забарвлення при концентрації домішки с=5·10⁻¹ мол. %. У зв'язку з тим, що гранична розчинність лужних металів у кристалах флюоритів дорівнює 10⁻¹ мол. %, то на практиці вклад термостимульованого тунелювання в сумарні релаксаційні процеси є незначним.

При концентраціях домішки в кристалі с<0,1 мол. % середня відстань між F_A і V_{KD} центрами l>10a. На такій відстані тунелювання посіїв заряду відсутнє і релаксація F_A - V_{KD} -пар відбувається термоактиваційним шляхом (рівняння 1 і 2). У табл. 2 (V стовнець) наведені дапі, що характеризують частку F_A -центрів, які зникають внаслідок рекомбінаційних процесів (рівняння 1) та $F_A \rightarrow M_A$ '-перетворень (рівняння 2; табл. 2, VII стовпець). Значення величин. наведених у табл. 2, відносяться до процесів, при яких енергія термодисоціації V_{KD}-центрів не залежить від способу дисоціації (діркові чи аніонні механізми). Дані табл. 4 і рис.4 ілюструють залежність імовірності реалізації реакції 1 (w₁) і реакції 2 (w₂) від різниці величини енергії термодисоціації ΔE_d , що стимулюють ці процеси. З поданих результатів випливас, що в міру збільшення величини ΔE_d співвідношення w_1/w_2 зростає і при $\Delta E_d = 0,05-0,1$ еВ реалізується лише один із каналів розпаду V_{KD} -центрів.

За свосю структурою, механізмом утворення та розпадом V_{KD} -цептри забарвлення не мають аналогів у лужно-галоїдних кристалах. Вони утворюються виключно в кристалах галогепідів двовалентних металів (ГДМ), легованих лужними іонами, і визначають специфіку й унікальність як структури центрів забарвлення в кристалах ГДМ, так і їх термо- і фотоіндукованих перетворень. Як видно з табл. 1 і 3 та рис. 1 і 3, концентрація V_{KD} -центрів вища або пропорційна з концентрацією V_{K} -центрів лише у високолегованих кристалах (с>0,1 мол. %). У слаболегованих кристалах (с<0,01 мол. %) частка V_{KD} -центрів складас 2 – 5 % від концентрації V_{K} центрів, а тому вклад V_{KD} -центрів у радіаційні процеси в даних кристалах є незначним.

З вищеописаного в даній статті можна дійти висновку, що механізм релаксації центрів забарвлення в легованих кристалах флюоритів визначають такі чинники, як концентрація легуючих домішок, розміри домішкових іонів. матриця кристала. У попередніх наших роботах [1,4,5] кожний із вказаних факторів розглядався окремо, ізольовано один від одного. Як показують результати даних досліджень, усі зазначені фактори взасмопов'язані між собою, і системний підхід до встановлення структури загальних закономірностей механізму генерації термота фотоіндукованих перетворень центрів забарвлення вимагає їх розгляду в комплексі.

1. Говор Н. В., Крочук А. С., Чорний З. П. Термоиндуцированные дырочные процессы в кристаллах SrCl₂-Me⁺ //ФTT. 1993. Т.35. №12. С. 3308 – 3310. 2. Говор М. В., Крочук А. С., Чорній З. П., Щур Г. О. Про силу осциляторів електронних центрів забарвлення у кристалах зі структурою флюориту //УФЖ. 1994. Т. 39. №9 – 10. С. 966 – 969. З. Качан С. І., Пірко І. Б., Салапак В. М., Чорній З. П., Дубельт С. П. Домішкововакансійні агрегати в легованих кристалах флюоритів // Вісник політехніки. Електроніка. 2004. №513. С. 131 – 136. 4. Крочук А. С., Чорній З. П., Щур Г. О., Салапак В. М., Говор М. В. Іонні термоструми в радіаційно забарвлених кристалах галогенідів двовалентних металів: Дис. д-ра фіз. - мат. наук. Л., 2000. 6. Чорній З. П., Пірко І. Б., Салапак В. М., В. Механізм генерації центрів забарвлення в легованих кристалах флюоритів. І. Одномірна модель // Науковий вісник УкрДЛТУ: Зб. наук.-тех. пр. Л., 2005. Вип. 15.1. С. 96 – 104.