Preconditions and features of diffusive nickel plating of alloys of EP202 type in lithium melt

Author(s) Collection number Pages Download abstract Download full text
Datsii O. I., Palamar O. O., Shakhbazov Ya. O., Shyrokov O. V., Shyrokov V. V. № 2 (53) 80-92 Image Image

The expediency of diffusive nickel plating of heat-resistant alloys of KHN67MVTJU (ЕП202) type in lithium melt has been grounded for the operation in conditions of high-speed, high-temperature oxidative gas flows. We have found out that alloys of this type has a relatively low thermal conductivity, and therefore high susceptibility to ignition. The thermal conductivity of nickel is 7 times more, and it can be the basis of protective coatings and alternative to expensive palladium. The features of formation of diffusive nickel coatings and their influence on physic-mechanical properties and the resistance to the alloy oxidation have been studied. It is shown that the effect of diffusive nickel plating in lithium on the mechanical properties and the quality of the machine-processed surfaces is insignificant.

Keywords: coating, alloys, nickel, lithium melt, temperature, mechanical properties, heat resistance, structure, phase composition.


  • 1. Caron, P., Diologent, F., & Drawin, S. (2011). Influence of chemistry on the tensile yield strength of nickel-based single crystal superalloys. Advanced Materials Research, 278, 345– 350 (in English).
  • 2. Kablov, E. N., & Golubovskij, E. R. (1998). Zharoprochnost’ nikelevyh splavov. Moscow: Mashinostroenie (in Russian).
  • 3. Belov, E. A., Gaevs’kij, V. V., & Dubovik, D. I. et al. (2011). Issledovanie vozmozhnosti podzhiganija detali iz nikelevogo splava JeP-202 pri gorenii na ejo poverhnosti organicheskogo veshhestva. Trudy NPO JeNERGOMASh im. akademika V. P. Glushko, 28, 192–205 (in Russian).
  • 4. Gubanov, B. I. (1998). Triumf i tragedija «Jenergii»: razmyshlenija Glavnogo konstruktora. Prezhde vsego — o dvigatele pervoj stupeni RD-170. Nizhnij Novgorod: NIJeR. Retreived from http://www.buran.ru/htm/07-3.htm (in Russian).
  • 5. Maksimovich, G. G. (1986). Mehanizm i kinetika formirovanija palladievogo pokrytija na nikelevom splave. FHMM, 3, 68–71 (in Russian).
  • 6. Ljakishev, N. P., Pliner, Ju. L., Ignatenko, G. F., & Lappo, S. I. (1978). Aljuminotermija. Moskva: Metallurgija (in Russian).
  • 7. Rykalin, N. N. (1951). Raschety teplovyh processov pri svarke. MAShGIZ (in Russian).
  • 8. Parkus (1963). Neustanovivshiesja temperaturnye naprjazhenija. Moskva: Fizmatgiz (in Russian).
  • 9. Jagodnikov, D. A. (2009). Vosplamenenie i gorenie poroshkoobraznyh metallov. Moskva: Izd-vo MGTU im. N. Je. Baumana (in Russian).
  • 10. (1971). Otchet №2245: Issledovanie uslovij zazhiganija i gorenija metallov v kislorode. VNIIkriogenmash (in Russian).
  • 11. Denisenko, G. F., & Fajnshtejn, V. I. (1968). Tehnika bezopasnosti pri proizvodstve kisloroda. Moskva: Metallurgija (in Russian).
  • 12. Fajnshtejn V. I. (2008). Kislorod, azot, argon — bezopasnost’ pri proizvodstve i primenenii. Moskva: Intermet-Inzhiniring (in Russian).
  • 13. Brejter, A. L., Mal’cev, V. M., & Popov, E. I. (1977). Modeli vosplamenenija metallov. Fizika gorenija i vzryva, 4, 558–570 (in Russian).
  • 14. Shirokov, V. V., & Bіljuk, A. І. (2013). Formuvannja ta vplyv іntermetalіdnyh і nіkelevyh difuzіjnyh pokrittіv na mehanіchnі vlastivostі hromonіkelevyh stalej і splavіv. Mіzhvuzіvs’kij zbіrnyk «NAUKOVІ NOTATKI», Vol. 41, 2, 266–271 (in Ukrainian).
  • 15. Ivan’ko, A. A. (1968). Tverdost’. Kiev: Naukova dumka (in Russian).