Research of the influence of technological parameters of advanced vacuum forming technology on the braille quality

Author(s) Collection number Pages Download abstract Download full text
Maik V. Z., Кусьмерчик Я., Dudok T. H. № 1 (66) 117-123 Image Image

An important socio-humanitarian and economic problem is the adaptation of people with vision problems in everyday and professional life. The solution of these important problems is regulated by international and national conventions, memoranda and laws. In particular, the problem of special training and production of Braille editions remains relevant for people with vision problems in almost all countries of the world. Vacuum forming processes are widely used in the publishing and printing, packaging, advertising, food and other industries. In particular, the vacuum forming technology is widely used for the production of printing products for people with vision problems. Vacuum forming technology involves heating a thermoplastic sheet blank to a highly elastic state, followed by forming and cooling. The vacuum forming method differs from others in ease of manufacturing, compactness, relative cheapness of equipment and technological devices. Today, this technology is one of the most promising for the production of bulk products from polymer materials. One of the main elements of vacuum forming technology is the matrix, which can be made from various types of materials. The selection of material for manufacturing the matrix depends on the quantity of the order, the quality of the product surface, the manufacturing accuracy, cost and other factors. The approbation of the improved vacuum forming technological process using cardboard matrices for applying the Braille font is carried out. The research is conducted on the quality of Braille application by vacuum forming technology using PVC films with a thickness of 0.2 and 0.3 mm. The study of the dependencies of the height and diameter of Braille elements depending on the diameter of the elements on the cardboard matrix and on the parameters of the improved technological process is conducted.

Keywords: vacuum forming technology, technological parameters, Braille font, cardboard matrix, PVC films, element diameter, element height.

doi: 10.32403/1998-6912-2023-1-66-117-123


  • 1. Jiménez, J. et al. (2009). Biography of louis braille and invention of the braille alphabet: Survey of ophthalmology, 54, 1, 142-149 (in English).
  • 2. Maik, V. Z., Dudok, T. H., Opotiak, Yu. V., & Tymoshyk, M. A. (2011). Analiz navchalno-metodychnykh tekhnolohii, zasobiv ta prystroiv dlia inkliuzyvnoi osvity: Kvalilohiia knyhy, 1 (19), 118-147 (in Ukrainian).
  • 3. Synova, Ye. P. (2003). Reliefno-krapkove pysmo slipykh. Shryft Lui Brailia. Rozdil 1 (in Ukrainian).
  • 4. Burchak, O. K. (2005). Osvita slipykh: yii suchasne ta maibutnie: Sotsialne partnerstvo, 10, 26–27 (in Ukrainian).
  • 5. Maik, V. Z., Durniak, B. V., Holob, H., Bratsko, C., & Dudok, T. H. (2013). Problemy stan­dartyzatsii shryftu Brailia pry vyhotovlenni vydan dlia nezriachykh: Polihrafiia i vydavnycha sprava, 3-4 (63–64), 68-77 (in Ukrainian).
  • 6. Pryimenko, O. A., & Khmiliarchuk, O. I. (2013). Kompleksnyi pokaznyk yakosti pakovan ta reklamnoi produktsii, shcho vyhotovleni vakuumnym formuvanniam: Tekhnolohiia i tekhnika drukarstva, 1 (in Ukrainian).
  • 7. Suberliak, O. V., & Bashtannyk, P. I. (1995). Tekhnolohiia vyrobnytstva vyrobiv iz plastmas i kompozytiv. Chastyna 1. Kyiv : ISDO (in Ukrainian).
  • 8. Suberliak, O. V., & Bashtannyk, P. I. (1996). Tekhnolohiia formuvannia vyrobiv z plastmas. Chastyna 2. Tekhnolohiia formuvannia pohonazhnykh vyrobiv. Kyiv : ISDO (in Ukrainian).
  • 9. Suberliak, O. V., & Bashtannyk, P. I. (2006). Tekhnolohiia pererobky polimernykh ta kompozytsiinykh materialiv. Kyiv (in Ukrainian).
  • 10. Fabuliak, F. H., Ivanov, S. V., & Maslennikova, L. D. (2006). Polimerne materialoznavstvo. Kyiv : Knyzhk. vyd-vo Nats. aviats. un-tu (in Ukrainian).
  • 11. Schwarzmann, P. (2019). Thermoforming: a practical guide. Carl Hanser Verlag GmbH Co KG (in English).
  • 12. Gómez, C., Tobalina-Baldeon, D., & Cavas, F. et al. (2022). Geometrical Optimization Of Thermoforming Continuous Fibers Reinforced Thermoplastics With Finite Element Mo­dels: A Case Study: Composites Part B: Engineering, 239. doi: https://doi.org/10.1016/j.compositesb.2022.109950 (in English).
  • 13. Van de Velde, K., & Kiekens, P. (2001). Thermoplastic polymers: overview of several properties and their consequences in flax fibre reinforced composites: Polym Test, 20 (8), 885-893 (in English).
  • 14. Peter, W. (2009). Klein Fundamentals of Plastics Thermoforming 2009 «Springer Cham», Morgan & Claypool Publishers (in English).
  • 15. Mikulonok, I. O. (2020). Tekhnolohichni osnovy pereroblennia polimernykh materialiv / 2-he vyd., pererob. ta dopov. Kyiv : KPI im. Ihoria Sikorskoho (in Ukrainian).
  • 16. Mikulonok, I. O. (2009). Obladnannia i protsesy pereroblennia termoplastychnykh materia­liv z vykorystanniam vtorynnoi syrovyny. Kyiv : IVTs Vydavnytstvo «Politekhnika» (in Ukrainian).
  • 17. Mikulonok, I. O. (2017). Tekhnolohichni osnovy pereroblennia polimernykh materialiv. Kyiv : KPI im. Ihoria Sikorskoho ; Vyd-vo «Politekhnika» (in Ukrainian).
  • 18. Radchenko, L. B. (1999). Pererobka termoplastiv metodom ekstruzii. Kyiv : IZMN (in Uk­rainian).